Inference in Multiply Sectioned Bayesian
نویسنده
چکیده
As Bayesian networks are applied to larger and more complex problem domains, search for exible modeling and more eecient inference methods is an ongoing eeort. Multiply sectioned Bayesian networks (MSBNs) extend the HUGIN inference for Bayesian networks into a coherent framework for exible modeling and distributed inference. Lazy propagation extends the Shafer-Shenoy and HUGIN inference methods with reduced space complexity. We apply the Shafer-Shenoy and lazy propagation to inference in MSBNs. The combination of the MSBN framework and lazy propagation provides a better framework for mod-eling and inference in very large domains. It retains the modeling exibility of MSBNs and reduces the runtime space complexity, allowing exact inference in much larger domains given the same computational resources.
منابع مشابه
Comparing Alternative Methods for Inference in Multiply Sectioned Bayesian Networks
Multiply sectioned Bayesian networks (MSBNs) provide one framework for agents to estimate the state of a domain. Existing methods for multi-agent inference in MSBNs are based on linked junction forests (LJFs). The methods are extensions of message passing in junction trees for inference in singleagent Bayesian networks (BNs). We consider extending other inference methods in single-agent BNs to ...
متن کاملComparison of multiagent inference methods in multiply sectioned Bayesian networks
As intelligent systems are being applied to larger, open and more complex problem domains, many applications are found to be more suitably addressed by multiagent systems. Multiply sectioned Bayesian networks provide one framework for agents to estimate what is the true state of a domain so that the agents can act accordingly. Existing methods for multiagent inference in multiply sectioned Baye...
متن کاملSome Practical Issues in Modeling Diagnostic Systems with Multiply Sectioned Bayesian Networks
Multiply Sectioned Bayesian Networks (MSBNs) provide a distributed framework for diagnosis of large systems based on probabilistic knowledge. To ensure exact inference, the partition of a large system into subsystems and the representation of subsystems must follow a set of technical constraints. How to satisfy these goals for a given system may not be obvious to a practitioner. In this paper, ...
متن کاملInference in Multiply Sectioned Bayesian Networks with Extended Shafer-Shenoy and Lazy Propagation
As Bayesian networks are applied to larger and more complex problem domains, search for flexible modeling and more efficient in ference methods is an ongoing effort. Mul tiply sectioned Bayesian networks (MSBNs) extend the HUGIN inference for Bayesian networks into a coherent framework for flexible modeling and distributed inference. Lazy propagation extends the Shafer-Shenoy and HUG IN infer...
متن کاملBelief updating in multiply sectioned Bayesian networks without repeated local propagations
Multiply sectioned Bayesian networks (MSBNs) provide a coherent and flexible formalism for representing uncertain knowledge in large domains. Global consistency among subnets in a MSBN is achieved by communication. When a subnet updates its belief with respect to an adjacent subnet, existing inference operations require repeated belief propagations (proportional to the number of linkages betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999